The cell cycle regulator 14-3-3σ opposes and reverses cancer metabolic reprogramming
نویسندگان
چکیده
Extensive reprogramming of cellular energy metabolism is a hallmark of cancer. Despite its importance, the molecular mechanism controlling this tumour metabolic shift remains not fully understood. Here we show that 14-3-3σ regulates cancer metabolic reprogramming and protects cells from tumorigenic transformation. 14-3-3σ opposes tumour-promoting metabolic programmes by enhancing c-Myc poly-ubiquitination and subsequent degradation. 14-3-3σ demonstrates the suppressive impact on cancer glycolysis, glutaminolysis, mitochondrial biogenesis and other major metabolic processes of tumours. Importantly, 14-3-3σ expression levels predict overall and recurrence-free survival rates, tumour glucose uptake and metabolic gene expression in breast cancer patients. Thus, these results highlight that 14-3-3σ is an important regulator of tumour metabolism, and loss of 14-3-3σ expression is critical for cancer metabolic reprogramming. We anticipate that pharmacologically elevating the function of 14-3-3σ in tumours could be a promising direction for targeted anticancer metabolism therapy development in future.
منابع مشابه
The cell-cycle regulator protein 14-3-3σ is essential for hair follicle integrity and epidermal homeostasis
The 14-3-3σ (Stratifin; Sfn) is a cell cycle regulator intimately involved in the program of epithelial keratinization. 14-3-3σ is unique in that it is expressed primarily in epithelial cells and is frequently silenced in epithelial cancers. Despite its well-documented role as a cell cycle regulator and as a tumor suppressor, the function of 14-3-3σ in the intricate balance of proliferation and...
متن کاملLinkage between Large intergenic non-coding RNA regulator of reprogramming and Stemness State in Samples with Helicobacter pylori Infection of Gastric Cancer Cells
Background: Long noncoding RNAs (lncRNAs), as non-protein coding transcripts, play key roles in tumor progression and stemness state in many malignancies, as their aberrant expression has been found in gastric cancer (GC) as one of the most common cancer worldwide. LINC-ROR (large intergenic noncoding RNA regulator of reprogramming) identified as an involved lncRNA in human malignancies, howeve...
متن کاملDeletion of 14-3-3σ sensitizes mice to DMBA/TPA-induced papillomatosis
The p53-inducible cell cycle regulator 14-3-3σ exhibits tumor suppressive functions and is highly expressed in differentiating layers of the epidermis and hair follicles. 14-3-3σ/SFN/stratifin is frequently silenced in human epithelial cancers, and experimental down-regulation of 14-3-3σ expression immortalizes primary human keratinocytes. In the repeated-epilation (ER) mouse model, a heterozyg...
متن کاملCSN6-COP1 axis in cancer
Constitutive Photomorphogenic 1 (COP1) was characterized in plants for a role in photomorpho-genesis. However, since mammalian cells do not perform photomorphogenesis, roles of these two proteins remain enigmatic. Recently we began to unravel their roles in oncogenesis. The CSN is an evolutionarily conserved multiprotein complex. Mammalian CSN consists of eight subunits (CSN1-CSN8) and has dive...
متن کاملLoss of the 14-3-3σ tumor suppressor is a critical event in ErbB2-mediated tumor progression.
UNLABELLED 14-3-3σ is a putative tumor suppressor involved in cell-cycle progression and epithelial polarity. We demonstrate that loss of one or both copies of the conditional 14-3-3σ allele results in accelerated mammary and salivary tumorigenesis in mice expressing an activated erbB2 oncogene under the endogenous erbB2 promoter. Significantly, the majority of tumors bearing a single condition...
متن کامل